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W 6 4 ABSTRACT

§§\»u The thesis develops(a simple technique for prelimi-
nary mission planning based on the time-dependent orbital
geometry of the launch and target planets) Numerical data
is presented showing the variation with launch date and
flight time of propellant requirements for ballistic and
low-thrust heliocentric trajectories. The propellant
requirements of each trajectory are then reduced to a
characteristic length essentially independent of the pro-
pulsion mode, as observed by Zola, by application of
relations derived for transfers in field-free space. The
characteristic length is further shown to be a unique
parameter of each trajectory which is roughly equal to
the planetary separation distance near the mid-point of
the transfer.

An averaged trajectory is thus defined for each actual
interplanetary trajectory: that transfer in field-free
space between the positions of launch and target planets
at a mean trajectory time near the mid-point of the flight.
The averaged trajectory model is shown to be suitable for
preliminary mission planning because of the ease with which
actual characteristic lengths and optimal launch dates may
be approximated, and trade-offs between mission design
parameters subsequently evaluated by application of field-
free space relations. Machine computation of accurate
trajectory data may then be localized within a neighborhood
of the simply derived optimum, resulting in substantial
savings of time and cost for low-thrust mission analysis.
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CHAPTER I

INTRODUCTION

Since the very beginnings of history, man's natural
curiosity and spirit of adventure have led him to explore
his environment. Limited only by his technological capa-
bilities, he has ranged successively farther from his
natural habitat -- over land, across the sea, and through
the air. Today, technology has progressed to the extent
that he stands on the brink of the last great unexplored
realm of his environment, space. 1In addition, he stands
on the verge of discovering the answer to an age-old
question of philosopher and scientist alike: does life
as we know it exist on other planets, or is Earth a

sanctuary unique in the universe?

As the concept of space exploration has transformed
from dream to reality, man has begun to plan in detail
his steps through the heavens. The first step, a manned

expedition to the moon, is scheduled for completion within



the decade. The second step, a manned mission to Mars,
awaits advancements in propulsion technology, but never-
theless is undergoing intensive preliminary study by

theoreticians.

Mission analysis is greatly complicated by the vast
number of interrelated design parameters that must be
considered and often compromised: scientific objective,
spacecraft design, propulsion requirements, cost,
reliability -- to name but a few. The first and perhaps
the most important phase of mission planning seems to be
the determination of propulsion requirements by optimal
trajectory analysis. (Nearly all mission trade-offs or
design compromises involve propellant considerations.)
However, the mathematical intractability of the equations
of celestial mechanics and optimization theory obscures
the relationship between low-thrust propulsion require-
ments and optimum missions. Though the orbital motion
of the plianets is an easily visualized and understood
phenomenon, calculation of the best way and the best time
to travel from one planet to another has remained a
time-consuming, tedious, and costly process. It is toward

easing this situation that the present work is directed.




1.1 Power-Limited Propulsion Systems

Many interplanetary missions of scientific interest
involve energy requirements well beyond the capabilities
of present-day chemical rockets. The specific energy
content of chemical fuels, directly related to the
maximum exhaust velocity or specific impulse of the rocket,
is too low to accomplish these missions without prohibitive

fuel consumption,

Attention has consequently been focussed upon advanced
propulsion systems capable to producing very high specific
impulses. MHD and ion rockets, for example, appear capable
of generating specific impulses of 1000 to 60, 000 sec.l,
compared to a theoretical maximum not much over 500 sec.
for chemical rockets. These high specific impulses yield
very attractive mass ratios for interplanetary missions;
however, this advantage is counterbalanced by the need for
a separate power source to supply energy to the thrusting
device. This power source and its associated equipment
comprise a large percentage of the total spacecraft weight,
and greatly reduce the useful payload. 1In additién, the
power output is necessarily limited, and therefore limits
the kinetic power attainable in the rocket exhaust, which

in turn restricts thrust acceleration to very low levels.



The specific power output expected of power supplies
within the next decade is about 0.25 kw/kg; eventual
improvement by a factor of 10 may be possiblel

. The

resulting thrust accelerations corresponding to the high

3

Ces s : . . - -6
specific impulses cited are in the range of 10 to 10

g's. Consequently, interplanetary missions will require
continuous thrusting over large portions of the trajec-
tories. Much of the difficulty inherent in mission
analysis for low-thrust propulsion systems derives from
this fact; the equations governing spacecraft motion

cannot in general be integrated analytically when con-

tinuous-thrusting terms are involved.

The advantages and disadvantages of advanced propul-
sion systems are such that low-thrust rockets yield
superior payloads for some missions, high-thrust rockets
for others. A combination appears to be the best solution
. L. 2
in cases where the two are closely competitive . Compara-
tive studies must be carried out to determine the most

desirable system for a given mission.

The propellant requirements of power-limited propul-

sion systems are derived in Appendix A. 1In general, the




propellant consumption of a system producing constant

exhaust power is directly related to the integral

ts a?
J ==" = dt

° (1-1)
where tf is the flight time and @& the magnitude of the
thrust acceleration. Minimum propellant consumption
corresponds to minimum J, and vice versa. The propell-
ant-optimal thrust program for a particular mission is
that one which minimizes J, subject to any specific
constraints on thrust magnitude, and which simultaneously
satisfies trajectory boundary conditions (e.g.,bposition
and velocity). An alternate measure of propellant
requirements for powér—limited systems producing constant
(or zero) thrust magnitude -- and, in general, for any
system generating constant exhaust velocity -- is the

familiar ideal velocity increment

ts
AV =f |al dt

(1-2)

Minimum propellant consumption corresponds to minimum Av.

The separate power supply associated with advanced

propulsion systems comprises, as previously noted, a



major portion of the total spacecraft weight. Since the
propellant required for a given mission decreases with
increasing power level, but powerplant mass at the same
time increases almost linearly with power level, the
powerplant can be sized to yield the maximum useful
payload ratio for a given mission. As a fraction of
initial spacecraft mass m, the optimum powerplant mass

m_ is’
s

myg r————\
(mo)oPtz: OLT.—O‘J-

(L-3)
The resulting maximum payload ratio is
2
(rnL> = (1-— qid-j-)
Mao/max
(1-4)

where the payload mass m. is considered to include space-

L
craft structure. o¢ is the ratio of powerplant mass to
exhaust power, and is assumed to be independent of power-

plant size. Equations (1-3) and (1-4) are derived in

Appendix A.




1.2 Optimization Techniques

The determination of optimal thrust programs to
minimize propellant consumption of space vehicles
according to eq. (1-1) or (1-2) is a problem in the
calculus of variations3. Classical theory has been
successfully applied to the formulation of differential
egquations governing propellant-optimal trajectories;
however, analytical solutions are generally possible
only when simplifying assumptions can be made to

’

linearize equations of motion or to average changes
. . 6 : :
in orbital parameters . Exact solutions for inter-

planetary trajectories require numerical computation

by digital computer.

Because the determination of propellant-optimal
trajectories requires solution of a two-point boundary
value problem, numerical computation has been a time-con-
suming trial-and-error procedure. Furthermore, diffi-
culties inherent in the classical theory arise in the
treatment of bounded control problems (low-thrust pro-
pulsion systems producing constant or limited exhuast
velocities fall in this category), and in the development
of sufficiency conditions, as opposed to necessary con-

ditions, for optimal trajectories.



Contributions to the theory of bounded control and
the existence of sufficiency conditions have been made
recently by several analysts, notably Pontryagin7, Kalman8,
énd Breakwellg. Techniques for applying these and other
optimal-control theories to machine computation have also
been developed. Significant among these are Bryson's
metﬁod of steepest ascentlo, Kelley's method of gradientsll,
Beliman's method of dynamic programminglz, and a formula-
tion of the method of adjoints by Mitchelll3. These
techniques all require iterative solution to the two-point
boundary value problem characteristic of interplanetary

trajectories, and convergence can be very slow, particu-

larly for the interesting case of bounded control.

Despite continued computational difficulties,

numerical studies of interplanetary trajectories neverthe-
less have met with much success. Upper and lower perfor-
mance kounds for practical power-limited propulsion systems
have been determined by consideration of two hypothetical
propulsion systems: (1) the variable-specific-impulse (VSI)
system capable of an unrestricted range of specific impulse,
and (2) the constant-specific-impulse (CSI) system capable

only of a fixed level of specific impulise or of coasting.




VSI trajectories are characterized by a variation in

Ces 13 . .
specific impulse of 100-fold or more ; CSI trajectories
(more indicative of practical performance capabilities)
are characterized by an optimal coast period occurring
between two thrusting periods (the "bang-bang" or

"power-coast-power" solution) .

Melbournel and Melbourne and Sauer;4 have applied
the variational calculus to two-and-three dimensional
models of the solar system to generate VSI and CSI
trajectory data and propulsion requirements for both
"orbiter" and "fly-by" missions to several of the plane-
tary orbits. Application of appropriate transversality
relations for unspecified terminal conditions has
resulted in the determination of optimal heliocentric
transfer angles and intercept positions aléng the target
orbits for missions of fixed flight time. The existence
of a propellant-optimal specific impulse and an all-pro-
pulsion lower thrust limit for CSI missions of fixed
flight time is noted. 1In addition, it is observed that
the variation of the J integral and optimal coast‘time
with total flight time is similar to that derived analy-

tically for optimal transfers in field-free space.
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Similar investigations have been conducted by Zola
for CSI orbiter and round-trip missions between circular
orbits representing those of Earth and Mars. His results
show the effects of different thrust and power levels on
fuel requirements for missions of fixed flight time. In
general, higher power levels yield lower fuel consumption,
and for each power level there is an optimum thrust level
and an all-propulsion lower limit. As is the case with
Melbourne's and Sauer's data, most of Zola's results
correspond to optimized heliocentric transfer angles as
well as to optimized thrust programs. Thus, heliocentric
travel angle is not an independent parameter, but is

chosen to have its optimum value for any given flight time.

In general, numerical studies of the type described
are of particular value for the general coﬁclusions that
can be drawn regarding low-thrust payload capabilities
and optimal trajectory characteristics. Generation of
data even for these preliminary studies is a very costly

and time-consuming process.
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1.3 Mission Planning

The planning of an interplanetary mission, as pre-
viously observed, is an undertaking highly complicated
by the great number of interrelated variables and design
parameters to be considered. It is generally assumed that
scientific objectives of the mission have been specified;
mission planning in the broad sense then consists of
determining the best way in which to accomplish those
objectives on the basis of cost, reliability, and scien-
tific and political exigency. Each of these criteria can
be related through payload capability to necessary advance-
ments in state-of-the-art systems technology, launch date,
and mission duration. The preliminary phase of mission
planning consequently can be reduced to choosing the
combination of propulsion system, launch déte, and flight
time that maximizes the payload subject to the afore-
mentioned constraints. (It is assumed that the propellant-
optimal trajectory for any given propulsion system, launch
date, and flight timg will be employed.) Compromises
will necessarily be made on the basis of studies Quanti—
tatively relating payload to propulsion parameters, launch

date, and flight time.
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For interplanetary missions taking place within the
next decade, preliminary mission planning is relatively
straightforward. The choice of propulsion system is
limited to the chemical rocket, and payload ratios will
depend primarily on the launch date and flight time.
Hyperbolic excess velocities for one-way ballistic
trajectories to Venus and Mars have been tabulated as
functions of launch date and arrival datel6. From these,
ideal velocity increments and corresponding payload ratios
can easily be calculated. Round-trip missions are similarly
analyzed by pairing of outbound and inbound trajectories.
The possibility of significant fuel savings by use of
bi-elliptical transfers and atmospheric braking as well
as by transfers via Venus (for missions to Mars) have been
investigated by Hollisterl7. Velocity requirements for
certain of these maneuvers are currently being tabulatedls.
For others, data is not presently available and must be
generated by digital computation. However, machine com-
putation of ballistic trajectory data is relatively fast
compared to that of low-thrust data. In addition, a simple
planetary model developed by Hollister can be used to predict
optimal launch and arrival dates. Machine computation is then

necessary only in the neighborhood of the predicted points.
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Low-thrust propulsion systems will in all probability
be available for interplanetary missions taking place
somewhat later in the century. Studies such as those
previously described indicate that, for many missions,
advanced systems have considerably higher payload capa-
bility than do chemical rockets. The mission planner
must then compare payload capabilities of both high- and
low-thrust propulsion modes to ascertain the superior
system for his particular mission. The capabilities of
high-thrust propulsion are determined according to the
procedure just outlined. The determination of low-thrust
payload capabilities, however, is at present a far more
time-consuming process. The search for optimal launch
dates, flight times, and thrust levels entails the
generation of a great number of trajectories and is highly

costly of computer time.

The application of previous work to this search is
of limited value, since results often do not take into
consideration the actual time-dependent positions of the
planets in their orbits. For example, the optimai helio-
centric transfer angle for a 200-day flight from Earth to
Mars describes relative positions of the planets that in

actuality occur only once every two years (approximately).
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Further specification of the optimal intercept point on
the Martian orbit restricts Earth and Mars to absolute
positions that may occur at the specified 200-day interval
only once in scores or even hundreds of years. It is the
opinion of this author that a more realistic approach for
purposes of mission planning is to generate trajectory

data that is related to actual planetary positions.

To reduce the computation time presently required for
generating low-thrust trajectory data in the search for
optimum mission parameters, Zola15 suggests a method by
which approximate low-thrust propulsion requirements can
be quickly calculated. The method is based on the
correlation of various modes of rocket operation by means
of simple dynamical relations developed for transfers in
field-free space. 2Zola finds that a charaéteristic length

defined in field-free space as

t#

° (1-5)
is a very useful "linking parameter" for interplanetary
trajectories. When evaluated from actual propulsion
requirements by application of field-free space relations,

the characteristic length turns out to be "a near-invariant
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factor within and among high- and low-thrust modes of
operation." Consequently, when a reference solution to

a given trajectory is known, propulsion requirements for
other modes of operation can be determined approximately
by applying the appropriate field-free space relations to
the reference characteristic length. The search for
optimal trajectory parameters can be restricted to the
neighborhood indicated by the correlation method, thereby
greatly reducing the numerical computation required. Zola
suggests ballistic trajectories as a readily available
source of reference solutions, and VSI trajectories as a
potential source (being more easily obtained than CSI
solutions). An effective speed advantage of 100 to 1
over mission analysis by variational trajectory methods
has been achieved. It is also noted in passing that the
ideal velocity increment AV , commonly used as a
measure of high-thrust propulsion requirements, is a
highly variant parameter within and among the various

propulsion modes.
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1.4 Thesis Objectives

The existence of a characteristic length for a given
interplanetary trajectory indicates a possible correlation
between the planetary positions and the propulsion require-
ments related to a particular mission. The purpose of this
thesis is to determine that correlation, and thereby to
develop a simple technique for low-thrust mission planning

based on the time-dependent interplanetary geometry.
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CHAPTER II

RESULTS OF TRAJECTORY STUDIES

2.1 Description of the Mission and Propulsion System

Low-thrust trajectory data has been generated
numerically for the heliocentric portions of three-di-
mensional orbiter missions between Earth and Mars. The
heliocentric trajectories are assumed to start and end
at the spheres of influence of the respective planets,
and to be influenced only by the gravitatidnal field of
the sun. At the start of each trajectory, the space-
craft is considered just to have escaped the gravitational
field ot the departure planet, and therefore to possess
that planet's heliocentric velocity. At the end, the
spacecraft is requiréd to match the heliocentric velocity

of the target planet at its sphere of influence.

This terminal velocity constraint is the distinguishing

characteristic of the orbiter mission. To be captured in a
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low orbit about the target planet, the spacecraft must
be decelerated within the planetary gravitationali field,
i.e., after entering the so-called sphere of influence.
Accomplishment of this maneuver by low-thrust propulsion
requires that the spacecraft have little or no velocity
relative to the planet at the sphere of influence. 1In
contrast, fly-by missions (not analyzed in this thesis).
require no deceleration within the gravitational field
of the target planet., Hyperbolic excess velocity 1is
consequently of no concern, and the terminal velocity

constraint on the heliocentric trajectory disappears.

The orbiter mission is assumed to take place some-
time near the 1971 opposition of Earth and Mars. To
determine the effects of launch date and flight time on
propulsion requirements, actual three—dimehsional helio-
centric positions and velocities of the planets have been
used as trajectory end conditions. (These quantities

have been tabulated as functions of Julian datelG’ 18

.)
The launch date fixes the initial conditions, and the

flight time fixes the arrival date and the corresponding

final conditions.
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Trajectory data has been generated for both VSI and
CSI propulsion modes by use of the computational technique
developed by Mitchell and Kruppl3. Convergence 1s very
quick for VSI trajectories, but generally unsatisfactory
for CSI trajectories. Consequently CSI data is limited.
All numerical results correspond to the same ratio of
exhaust power to initial spacecraft mass, since the
optimization of launch date and flight time, independent
of power variation, is the objective of these studies.

The power ratio chosen,

P _ kw
TY\-° = 0.0242 g

corresponds to a conservative value of powerplant specific

mass,
mg kg
A = — = 10
P kw
and to a powerplant mass fraction of

Mg

which has been chosen from eq. (1-3) to maximize the
payload ratio when J=0,017 mz/lcc? (This value of J is
within the range obtained for 150- to 200~day VSI tra-

jectories.)
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The effects of different power levels have been
previously analyzed. In general, the J integral is
relatively independent of power ratio except for very
low power levelsl; higher final-to-initial mass ratios

15

then result from higher power levels, and vice versa .

This relationship is evident from eq. (2-2).

2.2 Low-Thrust Propulsion Requirements

The propellant requirements of numerically computed
trajectories are measured for purposes of illustration by

the integral

te
3‘:] :d-t

(2-1)
Recall that minimum values of J correspond to minimum
propellant consumption, or maximum final mass. The

exact relation, from Appendix A, 1is

m, m,

(2-2)
where m is the final mass. Launch dates are given in
terms of Julian date. (Julian date increases each day
by 1.0. For reference, J. D. 244 1150.0 corresponds to

the calendar date July 18, 1971, at noon.) The 1971
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opposition of Mars occurs at J. D. 244 1173.8, or 10.3

August. This date will henceforth be denoted by Topp°

Figures 1-4 show the variation of J with launch
date (TL) and flight time (tf) for propellant-optimal
VSI trajectories. (For purposes of clarity, the upper-case
T is used to indicate date, the lower-case t to indicate
trajectory time measured from launch. Thus t = 0 when
T=T , t =t at the arrival date TA' and T = TL + t

L f

in general.)

Note the similarity between the propellant require-

ments for Earth-to-Mars (E-M) trajectories shown in

Figure 1 and those for Mars-to-Earth (M-E) trajectories
shown in Figure 2. The propellant-optimal launch date
(TE) for each flight time occurs approximately half the
flight time prior to opposition, the exact difference,

T - T°, being somewhat less than % t_ for E-M transfers
opp L £

and about the same amount greater than % tf for M-E
transfers. This relationship is clarified in Figure 3,
where each curve has been shifted forward in date by
one-half the appropriate flight time. The nearly identical

minimum values and shapes of each pair of curves are also

apparent,
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Figure 4 shows the effect of non-coplanarity on
propulsion requirements for 150-day VSI trajectories
from Earth to Mars. For the coplanar trajectories,
position and velocity components of Mars out of the
earth's ecliptic plane are set equal to zero. The
coplanar components are then used as trajectory terminal
conditions. The one to two percent increase in J between
corresponding coplanar and non-coplanar trajectories
illustrates the small effect of the orbital inclination
of Mars on VSI propulsion requirements. This small effect
has been observed previously14 and attributed both to the
small inclination involved, 1.85? and to the relative
plane-changing efficiency of continuous thrusting. The
high propellant penalties characteristic of ballistic
transfers between non-coplanar orbits for which the helio-
centric transfer angle approaches 180%are not observed for
corresponding low-thrust trajectories. Particular examples
from Figure 2 are the i80—day and 210-day E-M trajectories
launched near J. D. 244 1170.5 and J. D. 244 1100.5,

respectively.

Comparison of corresponding VSI and CSI propellant

requirements for 180-day E-M trajectories are shown in
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1, 13

!

Figure 5. As predicted and observed by other analysts
CSI propulsion results in somewhat higher values of J than
does the VSI mode. The specific impulse chosen for the

CSI trajectories, 3210 sec, is intermediate among the
initial values observed for the corresponding VSI tra-
jectories. The related initial thrust acceleration is 1.573

b4 10_4 g'

s. Of particular interest here is the fact that
the optimal launch date is the same for both propulsion
modes., Similar data for other flight times and specific

impulses has not been generated because of the poor con-

vergence of the computational technique for CSI trajectories.

Figure 6 illustrates the variation of J with specific
impulse for two CSI missions of fixed launch date and
flight time. For comparison, points representing the J
value and initial specific impulse from the corresponding
VSI missions have been encircled. Note that the optimal
specific impulse is somewhat greater than the initial
value of the VSI propulsion mode, and somewhat less than
the all-propulsion upper limit, The upper limit corre-
sponds to the minimum value of thrust with which the
mission may be accomplished by CSI propulsion. The

existence for a particular mission of an optimal CSI



specific impulse somewhat greater than the initial VSI
value is predicted by the relations for transfers in

field-free space derived in Appendix B.

The variation of propulsion requirements with flight
time is often of interest to the mission planner. Figures
1 and 2 indicate that for VSI trajectories starting from
optimal launch dates, longer flight times in general
result in lower propellant requirements. This result is
also apparent from more extensive data generated by
Melbournel for missions of optimal heliocentric transfer
angle. The variation of propellant requirements with
flight time for missions starting from a fixed launch
date, however, have not to the author's knowledge been
analyzed. The effect of changing the arrival date and
hence the flight time is of particular importance after
a spacecraft already has been launched on an interplanetary
mission. Knowledge of the variation of propellant require-
ments with remaining flight time is then applicable to
changes in flight plan (perhaps to counteract unforeseen
circumstances) as well as to variable-time-of-arrival

13
guidance analysis .
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Figure 7 shows the variation of J with flight time
for both CSI and VSI missions starting from a fixed
launch date. Data is incomplete due to thesis time
limitations, yet certain trends are apparent. For short
flight times of 200 days or less, increasing the flight
time reduces propulsion requirements of both VSI and CSI
trajectories. For longer flight times, further propellant
reduction is minimal., In fact, there may exist an optimal
flight time at which the required propellant reaches at
least a relative minimum. The dashed curves, representing
propellant predictions based on the method developed in
Chapter V, exhibit minimum values. However, the genera-
tion of further numerical data to confirm or refute these

predictions is necessary.

It should be noted in passing that the phenomenon
of infinite switching (switching between power-on and
power-off operation at infinitesimal time intervals) has
been observed for CSI missions employing thrust levels
greater by factors of only two or three than the optimal
values for those missions. Infinite switching is a
mathematical singularity not easily interpreted in

physical terms. It is undoubtedly related to the situation



26

in which a so-called "switching function" remains constant
at the switching value over a finite time interval. The
switching function is a continuous variable derived by the
application of optimal control theory to the minimization
of propellant consumption for CSI trajectoriesl3. It
effectively tells the propulsion system when to thrust and
when to coast. When it is greater than a certain value,
the optimal operation is maximum thrust; when less, the
optimal operation is minimum thrust (zero). In most cases,
the switching function is equal to the switching value
only instantaneously. However, should it remain at the
switching value over a finite time interval, the optimal
thrust magnitude is indeterminate by the present theory
for trajectories in an inverse-square central force field3.
The observed infinite-switching phenomenon may indicate
that the optimal thrust magnitude in that region is
intermediate between maximum and minimum, Furthermore,
since the theory does not restrict operation to only one
coast period (the "power-coast-power" solution), it also
appears that for certain missions the propellant-optimal
CSI trajectories may in fact require more than one coast

period. Further research in this area is recommended.
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For comparison with the propulsion requirements of
low-thrust missions, Figures 8 and 9 show the total AV
required for ballistic trajectories between Earth and
Mars. AV 1is the sum of the hyperbolic excess velocities
at the two planets, and effectively measures the propellant:
required to transfer between the planetary spheres of
influence. The similarity between corresponding curves
for E-M and M-E trajectories is again apparent. Note also
that T -T is again somewhat less than % t_ for E-M

opp L £

transfers and about the same amount greater than % tf for
M-E transfers, at least for the shorter flight times. The
drastic propellant increases in the neighborhood of certain
launch dates for the 180- and 210-day trajectories corre-
spond to the heliocentric transfer angle's approaching
1800. Thus the effect of non-coplanarity is very serious
for two-impulse ballistic trajectories. The dashed curves
represent broken-plahe trajectories, in which a third
relatively small impulse near mid-trajectory accomplishes
the necessary plane change. The propellant requirements
are thereby significantly reduced for near-180° transfers.
It is apparent that the correlation of ballistic and
low-thrust propulsion requirements as suggested by Zola
will be valid only when heliocentric transfer angles are

[ J
not close to 180 or when two-dimensional (coplanar)

ballistic solutions are employed.
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CHAPTER II1

CHARACTERISTIC LENGTHS

The concept of a characteristic length with which
to correlate propellant requirements ot a given mission
within and among the various modes of rocket operation
has been suggested by Zola. The characteristic length
is defined for rectilinear transfers in field-free space

(FFS) as

| = Iti; dt

(3-1)
and is, quite simply, the distance travelled within the

specified flight time t The propellant requirements

£
for impuilsive (ballistic), VSI, and CSI point-to-point
transfers in FFS are derived in Appendix B. The constraint
that initial and final velocities be zero is applied,

analogous to the boundary conditions on velocity for

interplanetary orbiter trajectories. The relations for
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propellant requirements can be inverted to yield explicit

expressions for L:

(Impulsive) L= -é' av t.f- (3-2)
3
(vsI) L= -:-r-égi (3-3)
c? 2
cs1) L= -ctylnm, +;;[(1-m,) (3-4)

{

+ (1“/’":‘)1"" Ml]

where/nLl and p are defined for convenience as

M, = A (3-5)
m.

m, (3-6)
and c is the exhaust velocity. The ideal velocity

increment
t,

av = [ lal dt

(3-7)
is also derived in Appendix B for FFS transfers. For

the various propulsion modes it is

—Zc.lm./m-,
— e An (mg/m,)

(VST) av = -\’% Jtg (3-9)

av

u

Impulsive}

and CSI (3-8)



30

Characteristic length for actual interplanetary
trajectories are calculated by substitution of the
numerically~computed values of J orm, into the appropriate
expression (3-2), (3-3), or (3-4). Ideal velocity increments
are similarly calculated from (3-8) or (3-9). The actual
values of tf, c, and p must of course be used. As discussed
in Chapter II, all numerical trajectory data corresponds

to the power ratio p=0.0242 kw/kg.

3.1 Correlation by Characteristic Length

Figure 10 shows the characteristic lengths (Lc) of
180-day Earth-to-Mars trajectories calculated over a
range of launch dates for each propulsion mode. The close
agreement among the curves verifies the relative indepen-
dence of characteristic length upon propulsion mode. In
contrast, Figure 11 illustrates the poor correlation
achieved for the same trajectories by use of the ideal

velocity increment &V .

Figure 12 shows the characteristic length and the
ideal velocity increment calculated over a range of
exhaust velocities for two CSI missions of fixed launch

date and flight time. The near-invariance of characteristic
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length within the CSI mode of operation is evident; again,
AV is a highly-variant parameter with which poor corre-

lation is achieved.

No data is presented to verify the invariance of
characteristic length within the VSI or impulsive modes.
Within the VSI mode, the only propulsion parameter which
can be chosen arbitrarily is the power ratio p. It can
be shown analytically that the propellant-optimal
acceleration program for a VSI trajectory is independent
of p:; consequently neither J nor the characteristic length
derived therefrom can vary within the VSI mode for a

particular mission.

In the case of impulsive thrusting, only one (practical)
two-impulse ballistic trajectory exists for a particular
mission. Tne hyperbolic excess velocities at the planetary
spheres of influence are thereby fixed. The sum of their
magnitudes is the AV required for the heliocentric transfer,
independent of thrust level or specific impulse. Consequently
the characteristic length, dependent only upon &V  and tf
from eq. (3-2), must be invariant within the impulsive mode

for a particular mission.
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3.2 Characteristic Lengths from Trajectory Studies

The characteristic lengths of VSI and ballistic
trajectories between Earth and Mars are shown as functions
of launch date and flight time in Figures 13 through i6.
The values have been calculated from the corresponding
propellant requirements illustrated in Figures 1, 2, 8,
and 9., Note that since characteristic length varies
directly with J (VSI) or AV (impulsive), it is itself a
direct measure of the propellant required for a particular
trajectory. Thus the optimal launch date T; for a given
flight time corresponds to the minimum value of Lc' As
observed in Section 2.2, the optimal launch date for each
flight time occurs abproximately half the flight time prior
to the date of planetary opposition, T . The exact

OPP

® , is somewhat less than %4t

difference in date, T - T
opp

for E-M trajectories, and about the same amount greater

than % tf for M-E trajectories. The discrepancy between

Topp - T; and % tf, particulariy evident in Figure 3, seems

to increase in rough proportion with tf.

Perhaps the most interesting feature of the character-
istic length curves is that the minimum values are nearly

identical for E-M and M-E trajectories of the same flight
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time; further, they vary only slightly with flight time
itself, decreasing gradually as flight time increases. 1In
fact, not only the minimum values but the entire curves

are remarkably similar among the various flight times. (The
only exceptions to these general observations occur for the
previously mentioned ballistic trajectories of near-180

heliocentric transfer angle.)

3.3 Interplanetary Geometry

It is instructive at this poiht, keeping in mind the
variation of characteristic length with launch date, to
examine the time-dependent positions of Earth and Mars in
their respective orbits. 1In particular, consider the
line~of-sight or "communication" distance between the two
planets. Figure 17 shows this geometric length (L ) as a
function of Julian date near opposition. The variation of
Lg with date is causéd by the earth's possessing a greater
angular velocity about the sun than does Mars; the earth
catches up to Mars and "passes" it at opposition. The
minimum geometric length occurs slightly after opposition
because Mars is approaching its aphelion point, and the
two orbits are nearing their minimum radial separation

(not to be confused with planetary separation).
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By comparison of Figures 17 and 13-16, it is apparent
that the variation of Lg with Julian date near opposition
bears marked resemblance to the variation of characteristic
length near the optimal launch dates. The generally
parabolic curve-shapes are quite similar, and the minimum
values are roughly the same (within 10 to 15%). 1In fact,
were the planetary separation shown in Figure 17 superposed
on the characteristic length diagrams at the appropriate
dates, it would be consistent with the observed trends of

optimal launch dates and decreasing minimum values.

A little thought should indicate that the geometric
planetary separation at a particular date is, in actuality,
the characteristic length for the VSI or impulsive trajectory
departing from either planet on that date and arriving after
an infinitesimal flight time at the other planet, effectively
on the same date. In other words,

L = limit L

9 t -»0
£ (3-10)

For small flight times, the spacecraft accelerations and
velocities are much greater, respectively, than the

gravitational acceleration due to the sun or the helio-
centric velocities of the planets, In the limit, as t

f

approaches zero, the latter are completely negligible, and
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the interplanetary trajectory becomes essentially a
point-to-point transfer in FFS. The distance travelled
in FFS (here, the planetary separation distance) is by

definition the characteristic length.

It has previously been observed that orbital
eccentricity can be of significant effect on interplanetary
propulsion requirements, but that orbital inclination is
of very little. The explanation is very simple in terms
of planetary separation and characteristic length., The
relatively large eccentricity of the Martian orbit
(e=0.093) causes its radial distance from the earth's
slightly-elliptic orbit (e=0.017) to vary from 0.37 a.u.
at perihelion to 0.68 a.u. at aphelion. Consequently,
the planetary separation Lg for "favorable" oppositions
occurring near the Martian perihelion point will be closer
to 0.37 a.u.; the separation for "unfavorable" oppositions
occurring near the aphelion point will be closer to 0.68
a.u. Assuming that a correlation exists between character-
istic length and geometric planetary separation, one would
then expect the optimum characteristic lengths to vary much
in the same proportion (1.84:1) between favorable and

unfavorable oppositions. The corresponding J integrals
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would then vary according to the square, or by a factor

of approximately 3.4. Melbourne and Sauer's data14 shows
an analogous variation by a factor of 3.5 for trajectories
corresponding to optimal transfer angles and different

intercept points on the Martian orbit.

The orbital inclination of Mars (l.85°) causes Mars
to reach its maximum distance below the earth's ecliptic
plane (0.045 a.u.) near the 1971 opposition. The minimum
planetary separation is then 0.375 a.u., about 0.7% larger
than its projection on the ecliptic. Thus, going from
coplanar to non-coplanar trajectories should increase
values of L. by about 0.7%, and of J by about 1.4%.
Numerical data shown in Figure 5 shows an actual increase

of roughly 2%.

Opposition periods of Mars occur approximately at
780-day intervals. The next few favorable oppositions
will occur in 1971, 1986, and 1988; unfavorable oppositions

will occur in 1965, 1978, and 1980.

Conjunctions of Earth and Venus occur very nearly
at 580-day intervals, the next in early 1966. The orbit

of Venus is very nearly circular (e=0.007), and is inclined
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3.40° from the ecliptic plane. The radial separation
between the orbits varies only from 0.265 to 0.289 a.u.;
hence, values of J should vary by less than 20% between
favorable and unfavorable conjunctions. The effect of
orbital inclination on J should again be small, about 1%.
Favorable conjunctions occur in 1966, 1974, and 1982;
unfavorable, in 1967, 1972, 1975, 1980, and 1983. The

differences are relatively small for propulsion purposes.
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CHAPTER 1V

CORRELATION OF CHARACTERISTIC LENGTH WITH
INTERPLANETARY GEOMETRY

4.1 Functional Relationships of Characteristic Length

The basic functional dependence of characteristic
iength on the various mission parameters has been
investigated in Chapter III and can now be summarized.
Characteristic length is nearly independent of the mode
of rocket operation, and of the power and thrust levels
within a particular mode. It is, however, strongly
dependent upon launch date and flight time, and hence to
the associated interplanetary geometry. For a fixed
flight time, the magnitude and variation of characteristic
length near the optimal launch date are very similar to
the magnitude and variation of planetary separation
distance near the subsequent opposition date. The optimal
launch date occurs approximately half the>corresponding

flight time prior to opposition; the associated minimum
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value of characteristic length is only weakly dependent

upon tf, gradually decreasing with longer flight times.

4.2 Mean Trajectory Time

The characteristic length and the interplanetary
geometry associated with a particular mission can be
closely correlated by a parameter t* which shall be
designated the "mean trajectory time." Consider the
following argument, Characteristic length is a direct
measure of the total propellant consumption and hence
of the average propulsion requirements associated with
a particular mission. Minimum characteristic length
(for a given flight time) results when the minimum
separation of launch and target planets occurs at
approximately half the total flight time after launch,
and is roughly equal to that geometric distance. 1In
fact, the rough equaiity also holds true for non-minimum
characteristic lengths and planetary separations ~-- as
long as the pertinent planetary separation is chosen to
be that at approximately half the flight time after launch.
Thus the characteristic length is correlated with planetary
separation, not at the beginning or end of a trajectory,

but at a particular time along the trajectory which is



near half the total flight time. This particular time is
defined as the "mean trajectory time," t*, Note that t*

is not directly related to date except through the launch
date for a given trajectory. It is simply the particular
instant in running trajectory time, measured from launch,
at which the simultaneous planetary separation is best
correlated with the characteristic length. Specifically,
since planetary separation Lg is solely a function of date,
and characteristic length Lc is a significant function only
of launch date and flight time, the correlation can be

Sul'nma_rized by the expression
L T t ~ L T +4 t*

Note that the minimum characteristic length occurs for

. Thus the optimal

a given flight time when T_ <+ t*=T
L opp

launch date is

TL(tf)=T - t*(tf)

opp
(4-2)
Mean trajectory time evidently is of little practical
use for calculating approximate characteristic lengths
from eqg. (4-1) unless it can be evaluated from known

mission parameters: launch date, flight time, and the
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associated geometry of the planets, Examination of Figures
13, 14, and 17 reveals a very simple relationship between
t* and mission parameters for VSI missions. Since the
shapes of the characteristic-length curves are quite
similar to that of the planetary-separation curve, t*

must be nearly independent of launch date for a given
flight time. The variation of t* with tf can then be
determined from the variation of TL with tf. Figures 13
and 14 indicate this variation to be nearly linear; hence

t* is, to good approximation, linearly proportional to tf:

(4-3)
For E-M trajectories, k is somewhat less than %; for M-E
trajectories, k is about the same amount greater than %
(see Figure 3). If the k's of the respective trajectory
directions are designated as kem and kme' the relationship

is

(4-4)
It will be noted from Figures 13 and 14 that the actual

values of kem and k for VSI trajectories near the 1971
me
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opposition are about 0.45 and 0.55, respectively.

Mean trajectory times for ballistic trajectories
can be approximated in the same manner. The character-
istic-length curves shown in Figures 15 and 16 are not
quite as similar to one another as are the corresponding
VSI curves, due to the large effect of non-coplanarity
on near—180. ballistic transfers. Consequently, the k
of eq. (4-3) varies somewhat with launch date and flight
time. However, optimal launch dates can still be deter-
mined approximately by using eqs. (4-2), (4-3), and the

k for VSI trajectories.

The relationship of mean trajectory time to total
flight time can be interpreted qualitatively on physical
grounds. Consider the potential energies of Earth, Mars,
and the spacecraft within the gravitational field of the
sun., Since potential energy varies inversely with
radial distance from the sun, the average potential
energy of the transfer occurs at a radial distance closer
to the earth's orbit than to the Martian orbit. Thus the
spacecraft can be expected to achieve its average potential
energy at less than half the flight time for E-M transfers,

and at more than half the flight time for M-E transfers,
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Furthermore, since the heliocentric angular velocity of
the earth is greater than that of Mars, and the spacecraft
angular velocity changes smoothly from one to the other
during a transfer, the spacecraft will accomplish half

its total angular travel in less than half the flight

time for E-M missions, and in more than half the flight
time for M-E missions. Consequently, the mean trajectory
time seems to be that time at which the spacecraft arrives
at the point on the trajectory most representative of the
total transfer. The most representative point is that one
which best averages the radial motion according to the
potential energy change, and the circumferential motion
according to the heliocentric angular change. Since
radial and circumferential motions along actual VSI
trajectories are respectively similar for different

flight times (just stretched out in time, more or less,
according to the totél flight time available), it is
reasonable to expect the mean trajectory time to be
proportional to flight time. Furthermore, since these
motions are effectively reversed between M-E and E-M
trajectories, it is also reasonable to expect the
respective mean trajectory times to be related according

to eq. (4-4): one mean trajectory time is very nearly
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the difference between tf and the reverse mean trajectory

time.

Mean trajectory times can be calculated approxi-
mately in the following manner., Determine the radial
distances from the sun of the launch planet at TL and
the target planet at arrival., Call these rL and r .

The radial distance corresponding to the average potential

energy is then

(4-5)
The fractional radial distance that the spacecraft must
travel to achieve the average potential energy is

KF - F_r:_

Ar;‘t -

(4-6)
The time required to travel this fractional distance is
_evaluated by considering the radial motion to be that of
a rectilinear VSI transfer in FFS. The appropriate FFS
equation relating fractional trajectory time to fractional

distance travelled (derived in Appendix B) is, for the
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case at hand,

arct) _ 3(5_)'_2(3._ )’
Ve t, te

(4-7)
Substituting (4-6) into eq. (4-7) yields the approximate
value of t=t* for the trajectory. For convenience,
eq. (4-7) is shown plotted in Figure 18; the variation of
A¥ with time is remarkably similar to that for actual
VSI trajectories. Mean trajectory times calculated in
this manner agree with those observed at the optimal
launch dates (Figures 13 and 14) to within a few percent.
In fact, the values of k so derived vary very little;

essentially the same accuracy can be attained using the

fixed values

k = 0.45
em

k = 0.55
me

For interplanetary missions to the outer planets,
such as to Jupiter or to Saturn, the spacecraft must
undergo a much larger percentage change in orbital
angular momentum than in energy. Thus the "best” average

point along the trajectory may well be better determined
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on the basis of angular momentum than on that of energy.

%

Since angular momentum is roughly proportional to r~,
energy to r— , the angular momentum average will occur at
a greater distance from the sun than the energy average.
Outbound mean trajectory times based on averaged angular

momentum would thus be greater than those based on averaged

energy. No trajectory data has been generated by the

author to check such cases.
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CHAPTER V

THE AVERAGED TRAJECTORY IN FIELD-FREE SPACE

5.1 The Averaged Trajectory

The results of Chapters III and IV indicate that
interplanetary transfers can be vastly simplified for
purposes of calculating optimal launchAdates and
approximate propulsion requirements. The following

summary will serve to elucidate those results.

Mean trajectory time effectually averages the
positions of the launch and target planets with respect
to the spacecraft during an interplanetary transfer. The
geometrical separation distance between the averaged
planetary positions is roughly equal to the characteristic
length of the actualltrajectory; it is identically equal
to the characteristic length of the rectilinear transfer

between those points in field-free space. Further, the
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characteristic length is a measure of the total propellant
consumption, and hence of the averaged propulsion require-
ments of a trajectory. It may thus be concluded that
actual trajectory propulsion requirements are approximated
by those of a rectilinear transfer in FFS between the
positions of the launch and target planets at the mean
trajectory time. This FFS transfer will be designated

the "averaged trajectory".

The averaged trajectory is a simplified model of
the true interplanetary trajectory. It is of particular
value to mission planning because of the resulting ease
with which optimal launch dates and approximate pro-
pulsion requirements can be calculated. The only data
necessary for these calculations are the planetary positions
as functions of date, and certain parameters describing
the propulsion system: exhaust velocity (impulsive),
power-to-mass ratio (VSI), or both (CSI). The simple
forms of the appropriate FFS equations and propellant
relations allow rapid hand calculation of desired quantities.
The averaged-trajectory model is most useful in the analysis
of low-thrust transfers, but may be applied as well to

ballistic trajectories for which the heliocentric transfer
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angles are not close to 180 deg.

5.2 Optimum Specific Impulse for CSI Trajectories

The fact that the propulsion requirements of an actual
interplanetary trajectory are approximated by those of an
averaged transfer in FFS suggests that further properties
of iow-thrust trajectories can be derived by application
of FFS relations. Examples are presented in this and the

next section,

First, consider the variation of propellant require-
ments with specific impulse, or exhaust velocity, for CSI
trajectories. As noted in Section 2.2 and illustrated in
Figure 6, there exists an optimum exhaust velocity for
any given mission and power level, By applying appro-
priate FFS relations (derived in Appendix B) to the
characteristic length of the given mission, the approximate

optimum exhaust velocity can be readily calculated,.

The characteristic length of the mission is assumed
to be known. For a CSI transfer in FFS, it is related to
the exhaust velocity and final mass ratio by eq. (3-4),

repeated here for convenience:
3

L= —c,'t&lﬂ-mlt -v--zs’;[('_M‘)t

# (1=mt) L, ) (5-1)
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where, again,

me
M‘- - ——
mO
(5-2)
and
P
P =
(5-3)
The optimum exhaust velocity c¢ is that value which

opt
maximizesmyl and, hence, minimizes propellant con-
sumption, ¢ is evaluated by straightforward differ-
opt

entiation of eq. (5-1) with respect to c. The algebra

is carried out in Appendix B; the result is

Ly (1-e¥)1+(1-€7) =0

D
(5-4)
where the optimum exhaust velocity is
I 3L
Cc = e—
ot T T 2t
(5-5)

and D is a mission "difficulty factor" defined as

- 27 L*
8pt?
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The resulting maximum value of mtis

(i) = €
(5-7)

Note that eq. (5-4) can be solved analytically for the

limiting cases of very small and very large mission

difficulty factors. The following expressions are easily

derived:

T =D (5-8)

De«l 4 Cm= _4';%""' (5-9)
\ (") ey = 1-D (5-10)

( 7 =JD (5-11)

D»1l { ca=+Fpts (5-12)
(m,) ., = e-ﬂ (5-13)
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It is instructive to determine the relationship
between the optimal exhaust velocity for CSI transfers
and the initial exhaust velocity for (propellant-optimal)
VSI transfers in FFS. From Appendix B, the initial

exhaust velocity c¢ for the VSI transfer is

3
rt;

c = = —‘—. ._9_"_-
o (vsi) 3L D at'.
(5-14)
Combining egs. (5-5) and (5-14) yields
P 4
c.'t = ? _3- .("‘)
(5-15)

The relation D2 T is easily verified from eq. (5-4);
the equality holds only in the limit as D approaches

zero. Thus eq. (5-5) implies that, for all D2 O,

(5-16)
This result is in agreement with the data shown in Figure

6.

The all-propulsion upper limit on the exhaust
velocity for a CSI mission can also be derived. This
limit corresponds to the lowest thrust level with which

the mission can be accomplished; no coast period is
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possible. The equation corresponding to (5-1) for the
case of zero coast time is
3 2
C 2pte
L= =—[(1-41-2E%
Zp c

(5-17)
Eq. (5-17) cannot in general be solved explicitly for
the limiting exhaust velocity, clim' However, for the
special cases in which D << 1 or D>>1, the limiting

values can be determined:

t t
(D<“) C‘lim = LA
zL (5-18)
(D>>I) c'lim = \‘ ZPt;
(5-19)

Comparison of egs. (5-18) and (5-19) with (5-9) and
(5-10), respectively, reveals that the all-propulsion
upper limits are only slightly greater than the corre-
sponding optimum values of exhaust velocity. 1In parti-

cular,

(D<<1) c ~ JE

P~y m— C
opt 3 lim (5-20)
3
(D”‘) Copt = -J-3; Clim (5-21)
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These results, too, agree generally with observations

15

. . .1
from numerical trajectory studies 4

A sample calculation of optimum exhaust velocity
will illustrate the method. Consider the 150-day E-M
mission launched at TL=J. D. 244 1080.5. (This mission
is one of the two for which numerical data is presented

in Figure 6.) The mean trajectory time for the mission

is

t*=k t = 67.5 days
em f

where the value 0.45 has been used for k , as suggested
em

in Section 4.2. The date corresponding to the mean tra-

jectory time is thus
T*=Tt+-t*=J. D. 244 1148.0

The planetary separation at T* is found from Figure 17 to

be
Lg(T*)=0.428 a.u.’

This value is the characteristic length of the averaged

trajectory, and is roughly (within 12%) equal to the

characteristic length of the actual trajectory.
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Thus

LeL = 0.428 a.u.
c g

Recall that the power ratio is

Kw -6 au?
P = 00242 17 = 0.6988 x |0 oy’

Then the mission difficulty factor, by eq. (5-6) is
D = 0.262

To evaluate ¥, eq. (5-4) must be solved by trial and
error. For the first trial, use a value for 1 somewhat
less than the actual D, say 3'. Then calculate the
corresponding value D' from eq. (5-4). For the next

trial, use the value 3" calculated from the equation

h J "= ('%—:) -Daehul
(5-22)

This iterative process converges very quickly. The value

of ¥ for the present case is found to be
I=o0.214

The optimum exhaust velocity is then calculated from eq.
(5-5) to be

au
= 0. = O
Copt = 0.0200 o 34, 600

m
sec
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. . 6
(The conversion factor is 1.0 au/day=1.7315 x 10 m/sec.)

The corresponding optimal specific impulse is

I ) = C = 3530 sec
sp opt opt

g

A more accurate value for c can be calculated by
opt
using the characteristic length of the corresponding VSI

trajectory in egs. (5-5) and (5-6). From Figure 13, this

value is

L =0.381 a.u.
c

Carrying out the preceding calculations once more yields

the following results:

D=0.208
T=0.176
c  =0.0216 2: =37,500 ®—
opt Y secC
I ) = 3820 sec.
sp ©opt

For purposes of comparison, the true optimum exhaust
velocity and specific impulse for the mission can be

determined from the numerical data shown in Figure 6.
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They are

c = 0,0211 au = 36,600 _m
opt day sec
(r ) = 3730 sec.

sp opt

The approximate values calculated by the simple technique
are remarkably accurate: the error is less than 6% in

the first case, less than 3% in the second. A few minutes
of slide-rule work have yielded essentially the same
results as several trajectory runs on the digital computer

-- plus a great deal more insight into the effects of the

several variables involved.

5.3 Optimal Flight Time

The variation of low-thrust propellant requirements
with flight time has been discussed in Section 2.2, From
the results of numerical studies, it appears that pro-
pellant requirements for both VSI and CSI missions decrease
monotonically as the flight times increase -- provided
that the optimal launch date is chosen for each flight
time. Choosing the optimal launch date for each t
effectively picks the trajectory of minimum characteristic

length for that flight time. Each of these trajectories
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can thus be approximated by the same averaged trajectory
in FFS: that between the positions of the launch and
target planets at opposition. It is a well-known result
that the propellant requirement of a fixed low—thruét
transfer in FFS decreases continuously as the available
flight time increases. This result is evident from the
now-familiar characteristic-length equations

3
=/ Tt
(vs1) L <

(5-23)
s

+(\-Mf)lﬂ’"’""1] (5-24)

When L is fixed, increasing tf without limit reduces J
continuously to zero and increases m, continuously to
1.0, both of which correspond to reducing the propellant
consumption to zero. This general conclusion is not

altered by the fact that actual minimum values of L

actually decrease gradually with flight time, as shown

in Figures 13 and 14,

For the case in which the launch date is fixed, the
above conclusion is no longer valid. Each flight time

corresponds to a different averaged trajectory, and hence
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to a different characteristic length. The characteristic
length is roughly equal to the planetary separation
distance at the mean trajectory time t* = ktf, as indicated

by the relation

L (T, t)=L (T +kt
o Ty g g(L f)

(5-25)

opPP

Then, when kt < T - T (where T 1is fixed), a further
£ opp L L

increase in tf will reduce L. and Lc; however, when
g

kt > T - T , further extending the flight time will
f opp L

cause both to increase. For any given launch date, then,

The minimum values of Lg and L. occur when TL-+ kt =T
c

increasing tf without bound will eventually cause the
characteristic length in egs. (5-23) and (5-24) to grow
larger. 1If Lc should increase rapidly enough, a point
will be reached at which further extension of the flight
time will require greater fuel expenditure. Consequently,
it is likely that for missions starting from certain

launch dates there exist finite flight times at which

the propellant consumption is locally minimized.

The variation of propellant requirements with flight

time for missions of fixed launch date is of little
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concern for preliminary mission planning. In general

the optimal launch date will be chosen for any particular
flight time, though in some situations the launch date

may be restricted. In the more advanced stages of mission
planning, however, the effects on propellant consumption
of changing the mission flight plan while the spacecraft
is en route must be determined. The variation of pro-
pellant requirement with flight time from a fixed launch
date is particularly relevant to that analysis, and to

the related study of variable-time-of-arrival guidance

techniques.

The variation of propellant with flight time can be
evaluated gquantitatively as well as qualitatively by use
of the averaged-trajectory concept and the associated FFS
equations. The procedure is simply to evaluate J or m,
for various flight times from eqs. (5-23) or (5-24), using
as the characteristic lengths the approximate values
calculated as functions of flight time from eq. (5-25).
The dashed curves of Figure 7 show the results of sample
calculations carried out in this manner for both the VSI
and CSI modes of propulsion; the solid curves represent

actual numerical data for the gsame missions. Observe that
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the curves derived simply from the averaged trajectory
model exhibit the same trend of propellant reduction with
increasing flight time as do the true curves. Increasing
the flight time much over 300 days is of limited value
for decreasing propellant requirements. It is at this
point that the increasing characteristic length tends to
cancel the reducing effect of longer flight time on pro-
pellant consumption. The approximate curves in fact
exhibit minimum values of J at flight times somewhat
greater than 300 days; insufficient numerical data has
been generated to confirm the existence of an optimal

flight time for the actual trajectories.

Though the simple model seems to predict with reason-
able accuracy the variation of J with flight time, the
actual values so derived are generally considerably larger

than the true values: errors of 60% or more are observed

at the longer flight times. Such errors are to be expected.

The rough agreement between characteristic length and the
planetary separation distance generally deteriorates as
flight times increase. For example, comparison of Figures

13 and 14 with Figure 17 indicates that the minimum L for
C
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90-day VSI trajectories is only 5% less than the minimum
Lg at opposition, but is 23% less than that value for
210-day transfers. Consequently the approximate minimum
values of J derived from the planetary separation distance
will be 10% and 50% larger, respectively, than the true
values. The percent error in characteristic length is
effectively doubled, since the J integral is proportional
to L% for VSI missions, and is approximately so for CSI

missions.

The observed errors in J do not, however, greatly
limit the value of the averaged-trajectory model for
calculating approximate propulsion requirements. For
purposes of preliminary mission planning, a 60% or even
a 100% error in the low values of a quantity that varies
over a range of two or more orders of magnitude is not
particularly serious, provided the general trend of the
variation is reasonably accurate. Furthermore, since
the percent error in J is large only for the long flight
times when J is relatively small, the effect on final mass

ratio is greatly reduced. This fact is evident from eq.

(2-2), which can be rewritten as '

(5-26)




The percent error in final mass ratio is approximately

J
dme . -F 53
mg |+ iE J

(5-27)
where .m, is the final mass ratio mf/mo. Thus when J is
small compared to p, the error in J has little effect on
the final mass ratio. This fact is illustrated in Figure
19a,where the final mass ratios for the cases under con-

sideration are shown as functions of flight time; the

ratio of power to initial mass is again

-6
p=0.0242 kw=0.6988 x 10 ~ au’

kg day3

The error in.m&is at most 5%, and only 2% at the longer
flight times. The accuracy will, of course, improve with

higher power ratios and deteriorate with lower ones.

5.4 Empirical Correction of Characteristic Length

The accuracy of propellant requirements calculated
with the»averaged—trajectory model can be greatly improved
by the application of an empirical correction factor that
better relates the true characteristic length, of a tra-
jectory to the planetary separation distance at mean tra-

jectory time.
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Close comparison of Figures 13 and 14 with Figure 17
indicates that minimum values of characteristic length
(LC) decrease with flight time for flight times up to
about 270 days in very nearly the following fashion:

o

L. zL_; [1_ 0.09(1—cosw+_$)]

(t ¢ 210) _
~ l_; [1-— 0.18 s'm"&:i] (5-28)

where L is the planetary separation distance at oppo-
g

sition. The parameter W turns out to be almost exactly

equal to the average of the mean anguliar motions of

Earth and Mars:

13 L ' — —r-.g-d—
w = .Z-(nE+ nM) = 0.0132 Jay

(5-29)
For flight times greater than 270 days, eq. (5-28) does
not yield accurate results. Better accuracy should be

attainable with the expression

(4

(tg »270) Le =Ly [1=o0on@ty]
(5-30)

Equations (5-28) and (5-30) are applicable only to
the minimum values of characteristic length and planetary

separation distance. The general discrepancy between Lc
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and the corresponding Lg’ i.e,

Al.tn_{t;) ='L3(11+t;v'-|—c(11ft$)
(5-31)

varies in a rather complicated fashion as the launch date
is moved farther from the optimum in either direction,
For flight times less than 200 days, Al generally decreases
as ITL-TEI increases; for greater flight times, the conQerse
is true. The variation can be described roughly by the
expression

AL(T,,t¢) ] JT-T |(‘ _1:_;_)

al® (k) 0.35 t, zo0
(5-32)

where AL is the discrepancy at the optimal launch date,
given by (5-28) or (5-30). Combining eq. (5-32) with
(5-28) or (5-30) yields the approximate empirical correc-
tion between the planetary separation distance at mean

trajectory time and the true characteristic length:

AL(1l»t&)

~L (0.18 sin? _i.i)[ m{(l-;—tfg)] (5-33)

£, €270

- -1l
= L3(0.017 w‘t;)[1 O;s; (1-3 ]

t‘>z7o

(5-34)
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The characteristic length is then

Lo (T, tg) = Lg(Tiet™) - oL (T, 1)
(5-35)

The correction term, though a rather complicated adden-
dum to an otherwise simple trajectory model, is never-
theless easily calculated when greater accuracy of
predicted propellant requirements is desired. Only the
mean angular velocities of the planets, plus the plane-
tary positional data necessary to define the averaged

trajectory, are required. Note, too, that

| v -T2

= ITL+ t*_TorPI
(5-36)

To illustrate the improved accuracy resulting from
application of the empirical correction term, the varia-
tion of propellant requirement with flight time for the
sample VSI mission of Section 5.3 has been recalculated.
Figure 19bcompares the corrected values of J with the
true values; the accuracy is much improved over the
uncorrected values shown in Figure 6. Errors in J have
been reduced from over 60% at the longer flight times
to only 2% on the average. 1In general, however, such

good agreement cannot be expected except when launch
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dates are near the optimum for each flight time. The

correction factor (5-32) is not accurate for large values

of the ratio
| -1
t&

Presumably launch dates that are near-optimal will be of

the greatest interest to mission planning.
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CHAPTER VI

MISSION PLANNING

6.1 General Remarks

The broad aspects of interplanetary mission
planning have been discussed in Chapter I. The pre-
liminary planning phase can generally be reduced to
optimizing the mission on the basis of propellant
expenditure. Propellant expenditure will be determined
solely by the choice of propulsion system, launch date,
and flight time; hence it is with these three design
parameters that preliminary mission planning is pri-
marily concerned. Both technical and non-technical
constraints on the parameters require trade-off studies
by which the best combination for a particular mission
may be ascertained. In the past, trade-off studies have
‘involved the generation of large quantities of trajectory

data to evaluate the effects of parameter changes; for
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low-thrust propulsion systems the process has been
particularly time-consuming, requiring machine compu-

tation of an additional trajectory for each parameter

change.

Preliminary analysis of interplanetary orbiter
missions can be greatly facilitated by use of the
averaged trajectory model developed in Chapter V. The
model is specifically applicable to the heliocentric
portion of two-body interplanetary trajectories matching
the planetary positions and velocities at the end points.
(Further applications of the model are discussed in
Chapter VII.) The model is of particular value because
of the ease with which the effects of parameter changes
can be evaluated from the associated field-free space

equations.

The averaged trajectory concept effectively implies
that for each interplanetary mission, defined by a
specific launch date and flight time, there exists a
unique characteristic length. The characteristic length
has been shown to be nearly invariant among and within
the various propulsion modes, but to be directly related
to the interplanetary geometry. Thus various propulsion

systems can be compared and the effects of changing
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propulsion parameters (power level and specific impulse)
evaluated for each mission simply by applying the appro-
priate FFS equations to its particular characteristic
length. Results will of course be approximate, but
certainly will be accurate enough to reduce greatly the
machine computation required to establish the optimum

configuration.

6.2 Determination of Optimal Launch Dates

It is apparent from the preceding discussion that
preliminary mission analysis can be focussed on deter-
mining the variation of characteristic length with launch
date and flight time. It has been shown in previous
chapters that an optimum launch date at which the charac-
teristic length is locally minimized exists for any given
flight time, and that this date occurs at approximately
half the flight time prior to the subsequent opposition
(or conjunction) of the planets in question. Thus the
search for optimal launch dates may immediately be
localized within the neighborhood of the first period of
planetary alignment at which the mission will be tech-

‘

nologically feasible,
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For any given flight time, the optimum launch date
can be determined to within a few days by the following
procedure. First, the geometric separation distance
between the launch and target planets must be obtained
as a function of time near the date of planetary align-
ment. (For simplicity, consider an opposition.) For
near-circular planetary orbits of small inclination, the
minimum separation distance will occur essentially at
that date. Next, the mean trajectory time t* for a
typical trajectory of the specified flight time is
calculated by the procedure described in Section 4.2.
(This typical trajectory for best results should start
at a launch date close to one half the flight time prior
to opposition.) The optimum launch date is then very
nearly equal to the opposition date minus the mean tra-
jectory time so determined. Since the ratio of mean
trajectory time to flight time is nearly independent
of launch date or flight time for transfers (in the same
direction) between near-circular orbits, the optimal
launch dates for other flight times are easily calculated

from the first.
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Optimum launch dates can also be determined from
reference trajectory data. Since the characteristic
length of a particular trajectory is nearly independent
of propulsion mode, it follows that the optimal launch
date for each flight time will also be nearly independent
of propulsion mode. Thus the characteristic lengths
calculated, for exampie, from the AV .of impulsive
(ballistic) heliocentric trajectories may be used to
establish the optimal launch dates for low-thrust tra-
jectories of the same flight times. (Care must be taken,
however, to ignore ballistic trajectory data corresponding
td near-180 deg. transfer angles.) Thus the so-called
“launch windows" for ballistic trajectories will in most

cases apply as well to low-thrust trajectories.

6.3 Determination of Propellant Requirements

Once the characteristic length of a particular
mission has been determined, the propellant requirements
can be calculated from the appropriate FFS equations.
Egs. (3-2) to (3-4) relate the mission characteristic
length to the AV, J, or mf/mo for impulsive, VSI, or

CSI propulsion systems, respectively. OV and J are
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themselves related to the final mass ratio by the equations

AV
. mg I
Isiv —_— =
(Impu e) — e (6-1)
meg 1
(VST and CSI) My Ty 4 T
P (6-2)

For quick calculation of approximate propellant
requirements, the planetary separation distance Lg of
the averaged trajectory for the mission may be used as
the characteristic length. As discussed in Section 5.3,
percent errors in the values of J calculated in this
fashion for VSI or CSI trajectories will generally
increase with longer flight times, being of the order
of 10% for 90-day trajectories and 50% for 210-day
transfers. However, these errors are greatly reduced
in effect on the final mass ratio and corresponding

propellant mass.

Considerably better accuracy may be achieved with
the averaged trajectory model when the planetary sepa-
ration distance Lg is modified by the empirical correction
term developed in Section 5.4. For launch dates reasona-

bly close (within 30 or 40 days) to the optimum values
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for each flight time, errors in J can be reduced to less

than 5%.

When ballistic trajectory data is available, the
foregoing procedure for calculating characteristic lengths
is unnecessary, except for missions of near-180 deg.
transfer angles. Characteristic lengths can again be
calculated without recourse to machine computation by
applying eq. (3-2) to the AV's of the appropriate helio-
centric trajectories. The averaged trajectory model is
useful for determining which ballistic trajectories will
yield the minimum characteristic lengths. In addition,
for flight times greater than 120 days, the corrected
planetary separation distance often approximates the
low-thrust characteristic lengths better than do those

of the corresponding ballistic trajectories.

When the characteristic length for a particular
mission has been determined, high- and low-thrust
propulsion systems can be compared on the basis of final
payload capability. For high-thrust propulsion systems,
the final mass includes useful payload plus structure
and engine mass, where the latter are normally a small

fraction of the initial mass. However, for power-limited
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propulsion systems, the final mass ratio also includes
the relatively large mass fraction of the powerplant.
The useful payload is thus considerably smaller than the
final mass of the spacecraft. Once the value of J for
the mission is known, the powerplant can be sized
according to eq. (1-3) so as to maximize the payload-
plus-structure ratio, mL/m . The maximum value of this

(o]

ratio is given by eq. (1-4), repeated here for conven-

ience:

(2) - (14T’

¢ 'max
(6-3)
where o is the powerplant specific mass, m /P. This
s

ratio may be compared to that for the high-thrust system,

m &

L ~TC me

m, - € T
° [ ]

(6-4)
where m, is the engine mass, It is instructive to
substitute the FFS equations (3-2) and (3-3) into (6-3)
and (6-4), respectively, to obtain the payload ratio in

terms of the mission characteristic length:

2
ML Ll
VsI e = ( -\lfé:L;—»)
( ) (m°)max ‘ t& (6-5)

(6-6)
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Because of the near-invariance of characteristic length
with propulsion mode, eqs. (6-5) and (6-6) provide an
easy means for comparing the maximum payload capability
of low-thrust propulsion with that of high-thrust pro-
pulsion. Note that the most difficult missions that may
be accomplished by either propulsion system in a given

flight time are determined by the expressions

.9
(vs1) Lper = % (6-7)
i =L et In 22
(Impulsive) Lmex = Z St me (6-8)

For low-thrust missions employing the more practical
CSI propulsion system, values of J will be somewhat
larger and payload capability smaller than those attained
by VSI propulsion. To estimate the maximum payload
capability of the CSI system for a particular mission,
the mission planner may choose to optimize the specific

impulse by the method of Section 5.2.

6.4 Mission Trade-Off Studies

The averaged trajectory concept and the associated

FFS equations are most beneficial to the mission planner
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in evaluating the trade-offs among the various design
parameters that will determine the optimum mission.

For example, the spacecraft design will generally be
influenced by the flight time chosen for the mission.
Longer flight times will usually require more redundant
system design for increased reliability, greater fuel
allotment for corrective maneuvers, increased shielding
for radiation-sensitive components, and additional
life-support equipment for the crews of manned space-
craft., All of these items will reduce the useful
payload, or increase the initial mass, aé the flight
time is extended. To choose the best flight time for
the mission, then, the mission planner must know at
what rate increasing the flight time will reduce the
propellant requirement and improve the final payload
ratio. The answer is easily obtained to first-order
accuracy by use of the averaged trajectory model and

FFS equations.

As another example, one of the mission criteria
might be to land an instrument package on Mars at the
earliest date possible. Knowing the probablé advance-
ments in state-of-the-art propulsion systems as a

function of launch date, the mission planner can with
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the simple model calculate the earliest arrival date

at which the mission can be accomplished with the
desired final payload. The advances in propulsion
technology and the specified final payload determine

the maximum characteristic length capability as a
function of launch date; the averaged trajectory model
determines the minimum characteristic length requirement
as a function of launch date and arrival date. The
earliest possible arrival date is that at which the

capability first equals the requirement.

It is evident that such trade-off studies would be
prohibitively time-consuming if carried out by digital
computer. The advantage of the averaged trajectory
model is that it permits trade-off studies to be carried
out by the application of simple FFS relationships to
characteristic lengths defined as functions of launch
date and flight time by the interplanetary geometry.

Once the optimum mission parameters have been roughly
determined by the simple model, relatively little machine

computation is required to pin-point the accurate values.

A simple example of mission planning with the

averaged trajectory technique is carried out in Appendix
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C. The mission is a 100-day orbiter trajectory to
Venus taking place in 1970. The optimal launch date
is calculated and the best propulsion system chosen
on the basis of payload capability. Numerically-com-

puted trajectory data is also presented for comparison.



CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Summary of the Investigation

The objective of this thesis has been to establish
a correlation between the propulsion requirements and
planetary positions related to an interplanetary tra-
jectory, and thereby to develop a simple technique for
preliminary mission planning based on the time-dependent

interplanetary geometry.

The general aspects of interplanetary mission
planning are discussed in Chapter I. For low-thrust
missions, the search for optimum design parameters
requires the generation of large amounts of trajectory
data by digital computation; the process is both costly

15

and time-consuming. 2Zola has suggested that mission

planning may be greatly expedited by the correlation of
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trajectory propellant requirements among the various
modes of rocket operation, The correlating parameter
is the characteristic length of each trajectory, derived
from the trajectory propellant requirements by the appro-

priate equation for a transfer in field-free space.

Chapter II presents the results of digital computer
studies for the heliocentric portions of low-thrust
"orbiter" trajectories between Earth and Mars near the
1971 opposition period, Actual planetary positions and
velocities as functions of date are used as trajectory
boundary conditions to determine the variation of pro-
pellant requirements with launch date and flight time,
Ballistic trajectory data is also presented for sake

of comparison.

The characteristic lengths derived from these pro-
pellant requirements are discussed in the third chapter.
Characteristic lengths from the various propulsion modes
are compared for a given mission, For different missions,
the variation of characteristic length with launch date
and flight time is analyzed and compared with the
time-dependent separation distance between the launch
and target planets. The significance of planetary

alignments (oppositions or conjunctions) is noted.
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Chapter IV develops the concept of mean trajectory
time by which the characteristic lengths of interplanetary
trajectories are correlated with the associated planetary
separation distances. The mean trajectory time is inter-
preted on physical grounds, and a simple method by which
it may be determined for any desired trajectory is

presented.

The characteristic length, mean trajectory time,
and planetary separation related to an interplanetary
trajectory are combined in Chapter V to define an
averaged trajectory in field-free space which closely
approximates the propellant requirements of the actual
transfer. Field-free space equations are then applied
to averaged trajectories to calculate the optimal
specific impulse for CSI propulsion, and to calculate
the variation of propellant requirements with flight
time from a fixed launch date, The corresponding digital
computer results are presented for comparison. In
addition, an empirical correction term is derived to
improve the accuracy of actual propellant requirements

calculated with the averaged trajectory model.
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Application of the averaged trajectory model to
preliminary mission planning is discussed in Chapter VI.
Techniques are presented by which to estimate optimal
launch dates for both ballistic and low-thrust trajec-—
tories, as well as to compare various propulsion systems
on the basis of payload capability. Use of the simple
model to study trade-offs between interrelated design
parameters is described and compared to use of the

digital computer.

A sample optimization is carried out in Appendix

C for a mission to Venus.

7.2 Conclusions

The following general conclusions concerning pro-
pellant-optimal interplanetary trajectories may be

drawn from the investigation:

1. The optimal launch dates for low-thrust
interplanetary missions occur prior to
the subsequent dates of planetary align-
ment by somewhat less than % the total
flight time for radially-outbound tra-

jectories, and by somewhat more than %
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the total flight time for radially-in-

bound trajectories.

Optimal launch dates for two-impulse
ballistic trajectories are nearly the
same as those for low-thrust trajec-
tories of corresponding flight times,
provided that heliocentric transfer

angles are not near 180 deg.

Low-thrust trajectories between non-
coplanar orbits incur no propellant
penalties as the heliocentric transfer

angle approaches 180 deg.

Low-thrust propulsion requirements for
VSI trajectories decrease monotonically
as the available flight time is increased,
provided that the optimal launch date is

chosen for each flight time.

For low-thrust missions starting from
fixed launch dates, there will in some

cases exist a finite optimal flight time.
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An optimal specific impulse, or exhaust
velocity, exists for every CSI mission;
it is uniquely determined by the launch

date, flight time, and power level.

The propellant requirements of each inter-
planetary mission may be reduced by
field-free space equations to a character-
istic length which is nearly independent
of the propulsion system (observed pre-

viously by Zola).

The characteristic length is essentially
a function only of launch date and flight
time, and hence is unique for each mission;
it is, in fact, roughly equal to the plane-
tary separation distance at the mean tra-
jectory time. The mean trajectory time is
nearly half the flight time, and represents
that time at which the spacecraft achieves
the best average of its orbital energy and

heliocentric travel angle over the transfer.

The propulsion requirements of an inter-

planetary trajectory can be approximated
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by those of a unique averaged trajectory;
the averaged trajectory is simply the
rectilinear transfer in field-free space
between the planetary positions at the
mean trajectory time. The approximation
is quite accurate when an empirical
correction is applied to the planetary
separation distance in question. The
effects of various parameter changes on
propulsion requirements can be estimated
with good accuracy by applying the appro-
priate field-free space equations to the

averaged trajectory.

The averaged trajectory model can be
employed with good accuracy in the pre-
liminary stages of mission planning to
conduct trade-off studiesvand to evaluate
optimum design parameters. Machine com-
putation of trajectory data may thus be
localized within a neighborhood of the

simply derived optimum.

Items 8 to 10 represent the significant contributions of

this thesis to the art of interplanetary mission planning,
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7.3 Recommendations for Further Research

It has been previously noted that the averaged
trajectory model derived in this thesis is applicable
only to the heliocentric phase of interplanetary orbiter
missions, for which terminal velocity conditions are
fully specified. Relaxing the terminal velocity con-
straint is particularly pertinent to the analysis of
fly-by trajectories, transfers to Mars via Venus, and
atmospheric braking. The appropriate field-free space
equations are easily developed and indicate that sig-
nificant fuel savings may be achieved by relaxing
terminal velocity constraints. It is thus recommended
that the averaged trajectory technique be tested for
fly-by missions and extended or modified, if necessary,

so as to apply.

Once the effects of relaxed velocity constraints
have been determined, the averaged trajectory model will
be well-suited to the analysis of practical round-trip
missions. The correlation of propellant requirements
with the interplanetary geometry should greatly facili-
tate visualization and matching of inbound and outbound

trajectories to find the best combination.
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The planetary escape and capture phases of inter-
planetary missions may also permit simplified analysis
in terms of characteristic length and field-free space

equations; further investigation in this area is suggested.

The field-free space equations related to the
averaged trajectory might also be applicable to
analyzing the effects of various cost functions on
"optimal” interplanetary trajectories. (For example,
the cost might include a function of the total flight

time, as well as the propellant expenditure.)

Another area relevant to mission planning is that
of simple, non-optimal thrusting techniques for low-thrust
trajectories. The optimal thrust programs of iow-thrust
trajectories near the date of planetary alignment often
involve thrusting more or less in the direction of the
target planet. Since guidance schemes based on thrusting
directly toward the target planet at all times would be
much simplified, it is recommended that research be
conducted to determine the additional propellant cost

of simplified thrusting techniques,
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APPENDIX A

SPACE PROPULSION SYSTEMS

A.1 General Propulsion Relations

The thrust £ produced by a rocket engine in space
is given by the product of propellant mass flow rate

m and the exhaust velocity c:
P

(A-1)
Note that ﬁp is considered to be a positive number,
and is equal to the negative of the time rate of change

of the overall spacecraft mass m:

. dm
Me =7 3¢

(A-2)
The thrust acceleration A (often cailed the specific

thrust) is then

£ me
= — = __-('
o m ™
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The kinetic power P of the rocket exhaust is

P = -% V;’t’ C.z (A-4)
= 4 ‘F'C.
z (A-5)

The specific exhaust power p is obtained by normalizing

P with respect to the initial mass m :

P M. z m, (A—G)
= L
=z mac
(A-7)
where .m is the normalized spacecraft mass
_m
M = m,
(A-8)

The exhaust velocity is directly proportional to the
specific impulse Isp of the rocket; the proportionality

factor is simply the standard earth gravity g. Thus

c = I‘P s azo)
A-
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A.2 High-Thrust Propulsion Systems

High-thrust propulsion systems may be defined as

those devices producing thrust accelerations of the order

of 0.1 g or greater. Generally only chemical rockets
and some nuclear rockets will fall in this category.
The final mass ratios attainable with high-thrust
systems can be derived from the propellant mass flow

rate. Combine equations (A-3) and (A-4) to yield

4 8m _ 4 __a
I (Um) = -2

(A-10)
When the exhaust velocity c is constant, eq. (A-10)

can be integrated to yield

A {Eﬁ = —-%; j |lal dt
° ° (A-11)

where me is the final spacecraft mass and tf the total
flight time. The absolute value of A& is employed to
indicate that the magnitude of thrust acceleration,
independent of direction, is the significant parameter.
Define the ideal velocity increment AV as

te

av =J- jal 4t
o (a-12)
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Eq. (A-1ll) can then be rewritten as

av
m_; T e
m, =

(A-13)

Chemical rockets in general are characterized by
constant exhaust velocity. The specific enexrgy content
of the propellant limits the exhaust velocity to about

Cpax = 5000 m/sec
for liquid-fuel rockets and about half that value for

solid-fuel rockets. The exhaust power is limited only

by the maximum mass flow rate of the rocket.

Nuclear rockets in general are capable of higher

exhaust velocities in the range

C = o000 te 12,000 m/sec

However, exhaust power is limited by the maximum power

level of the nuclear power supply.

A.3 Power-Limited Propulsion Systems

Nuclear rockets and advanced electric (MHD,
plasma-arc, and ion) rockets are generally character-
ized by the requirement of a separate power supply such

as a nuclear reactor to provide energy to the propellant.
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Consequently the exhaust power of the propellant .s
limited by the power level PS of the power supply and
the efficiency”n of power conversion within the thrusting

device:
P=7MmT

(A-14)
The final mass ratios attainable with power-limited
propulsion systems are derived from eqs. (A-2) to (A-4);

combine these to find

i dm _ d (] at
T Wt at "532(;;) - 2P

(A-15)
When the power level of the power supply is constant,

eq. (A-16) can be integrated to yield

+
me | q.me [L ot e
m“ P‘ 07‘2-

(A-16)
The engine efficiency'n will generally vary somewhat
with exhaust velocity. For purposes of simplicity,
however, consider it.to be constant. Define the para-
meter J by the relation

te
3-=..J' al gt

° (A-17)
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(Many sources omit the factor of % in the definition.)

Then eq. (A-16) becomes

—:\-‘—.' = I <+ 1“_9.!.
$ ) 4 (A-18)
= |+ 3
. (A-19)

Thus maximizing the final mass m_ requires minimizing

f
the J integral.

Since the powerplant mass ms generally will compose
a large fraction of the final spacecraft mass, the
povwerplant mass fraction must be sized to maximize the
final useful payload ratio for a given mission. For
this purpose, the spacecraft mass is considered to
consist of essentially three parts: powerplant mass m_,
propellant mass mp, and useful payload plus structure
mass m . Thus
L
AR L W
m. m. M.
(a-20)
For convenience, define oL as the specific mass of the

powerplant and p as the powerplant mass fraction:

83 n T,
(A-21)
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Mg
P = m,
(A-22)
Then the specific power of the spacecraft is
P:..P_
ol
(A-23)
and equation (A-19) becomes
aJ
me 1+
(Ar-24)

Note that the propellant mass ratio may be written

od

m mg a
R o2
* ° IR

(a-25)
Substitution of (A-22) and (A-25) into eq. (A-20)

results in the following expression for the payload

ratio:
m, \ "F
m, 14_.13'
p

(A-26)
Differentiate eq. (A;26) with respect to @ to find the

value of g that maximizes mL/m . The optimum value is
o)

Bopt = JotT — T

(a-27)
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The corresponding maximum payload ratio is then

(=),

=(1-m)l

(A-28)
The optimum specific power is found from egs. (A-23)

and (A-27) to be

‘49q¢ = 1[3? -J

(A-29)

Electric rockets contemplated for future space
application appear capable of generating exhaust
velocities over a very wide rangel,

c = 10,000 to 600,000 m/sec
At the higher specific impulses, or exhaust velocities,
the resulting thrust accelerations will be very low
because of the power limitations. Combining equations
(A-7 ) and (A-23) determines the initial thrust accel-
eration to be
a =-X__ % < Z

° C. A C, K C,
(A-30)

The minimum powerplant specific masses expected within
the next decade are about 4 kg/kw. For the range of

exhaust velocities mentioned previously, the resulting




97

-3
thrust accelerations will be of the order of 10 to

-6
10 g's.

Current development of electric rockets indicate
that any particular engine will probably be capable of
only small variations in specific impulse. However,
the unrestrained optimal acceleration program for
low-thrust trajectories calls for variations in specific
impulse by factors of 100 or more. Thus the VSI
(variable specific impulse) propulsion mode represents
an upper limit of low-thrust performance capabilities
which in general will not be achieved in practice. The
CSI (constant specific impulse) mode, on the other hand,
much more closely represents the capabilities of practical
systems, and will in fact establish a slightly conservative

performance bound.
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APPENDIX B

TRANSFERS IN FIELD-FREE SPACE

The dynamical relations for rocket-propelled
transfers in field-free space are derived in this
appendix for the three propulsion modes of interest:
impulsive, VSI, and CSI. One-dimensional point-to-
point transfers are analyzed, subject to the con-
straint that initial and terminal velocities be zero.
These velocity constraints are analogous to those
placed on interplanetary "orbiter" trajectories, for
which the heliocentric velocities of the planets must

be matched at the end-points.

B.l1 Impulsive Transfers

The rectilinear distance to be travelled in FFS
is denoted by L; the specified flight time is tf. The

spacecraft is accelerated impulsively from zero velocity

at t = 0 to the velocity necessary to traverse the
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distance L in time tf. In the absence of external

fields, that velocity will remain constant at the value

(B-1) ) |

At the end of the trajectory the spacecraft must be |
decelerated impulsively to zero velocity. The two
velocity impulses required are thus given by

AV, = -av, = L
t#
(B-2)
The total velocity increment AV required of the pro-

pulsion system is then
|
|

av = | lal dt = [av1+ |av,|

= — (B-3)
The final mass ratio of the spacecraft is determined
by this value of AV and the exhaust velocity of the

propulsion system according to eq. (A-13).

When the values of AV and tf are given, the

distance travelled is, from (B-3);

(B-4)



100

B.2 YV§I Propulgion

The propellant-optimal acceleration program for
a low-thrust trajectory is that which minimizes the

integral
tg 3
T—_"L —az-:d't
(B-5)

subject to the trajectory boundary conditions and any
constraints on the acceleration. (For VSI transfers
the acceleration is unrestricted.) The optimum accel-
eration program is found by the calculus of variations

3
approach . The problem is most easily set up in terms

of the spacecraft velocity v. The thrust acceleration

is then
a="v
(B-6)
and the distance to be travelled is
te
L:I U’clt
o
(B-7)

The optimum velocity program is that which minimizes

the functional
te ..

M= | o dt + A(L-{qui—)

[ ] °

- AL + _[:‘({—1 - Mr) dt (B-8)
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where N is an undetermined constant. Define the

integrand as

- '\.f"
F:(U]Uo = — - AV
r 3
(B-9)
The variational calculus then specifies that the following

Euler-Lagrange equation must be satisfied:

aF d (DF) =0
oV 4t \ 2V
(B~10)
Carrying out the indicated operation yields
v = —AN= const.
(B-11)

Integrating eq. (B-11) and applying the trajectory
boundary conditions on position (x) and velocity,

namely,

X=0 } t=0
v=0

(B-12)
V= (B-13)

yields the following results:
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alt) = —_‘;':i' (I—Z.—E;)

(B-14)
vt = %‘i({;)(t—%‘)

(B-15)
x() = L [3({'4)1—2.(%‘)3}

(B-16)

Note that the optimal acceleration program is simply
a linear function passing through zero at the mid-point
of the trajectory. The value of J obtained by sub-

stituting (B-14) into (B-5) is

oLt

t

J= >
¥ (B-17)
The final mass ratio of the spacecraft is determined

from eq. (A-19) using this value of J and the specific

power level p of the powerplant.

When J and the flight time are known, the distance

travelled must be

}

L
(B-18)
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The ideal velocity increment AV can be evaluated by
integrating the absolute value of the acceleration given

in eq. (B-15). The result is

t
£

3L
AV==J. jaldt = —
° §

(B-19)

It is also of interest to derive the initial exhaust
velocity called for by the optimal acceleration program.

From eq. (A-7) the exhaust velocity is

(B-20)
Substitution of eq. (B-14) into (B-20) and setting t = 0
then yields the initial value:

4’t4
e 3L

(B~21)

B.3 CSI Propulsion

Point~to-point rectilinear transfers with CSI
propulsion systems are completely deterministic when
the exhaust velocity'and power level are specified
(L and tf being fixed). No free parameter is left
to be optimized, as in the case of VSI propulsion.

Even the coast period is determined by the other
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parameters. However, it will be shown that, when the

exhaust velocity is not fixed, an optimum value for

each mission may be derived.

Consider first the case in which ¢ and p are both
specified. Then the propellant mass flow rate and the

thrust acceleration are determined from eqs. (A-3) and

(A-4) to be

. _ 2P
m, = p
(B-22)
_+ _ 2E
A= m T mc
(B-23)

For simplicity, normalize m, &p, and P with respect to

the initial mass m . Then (B-22) and (B-23) become
o

X = P
MM P (B-24)
mC M

(B-25)
where the script .m's denote the normalized variables

and, as before, » = P/mo. Note that ., = 1.0. Since
the propellant flow rate is constant by eq. (B-22),

the time-varying mass can be written as

(B-26)
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where ton does not include any coast periods. Then

the acceleration magnitude by (B-25) is

Ag

l—ﬂi\.rt.‘ (B-27)

]
(@]

Consider the rocket to accelerate from t
until t = tl, then to coast from t = tl until t = t
and finally to decelerate from t = t2 until t
The requirements that final velocity be zero and
distance travelled be L will determine tl and t2.
Integrating eq. (B-27) yields the following velocities

for each time period:

(tet) V@A) = = 22 du (1-anpt)

- C e (%) (B-28)

(t,etet,) vi) = U z-cheam,

(B-29)
(t, et ety) v)= -cdmom,
ve Mﬁ'-:—is'-,- (B-30)

Note that during each time period the mass is
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(£ 2t) () = 1—amgpt

(1, 4t ¢t,) m () = 1—ampt, =,

"

(tostety) mbe) = m -y (t-t,)

(B-31)
Requiring that the final velocity be zero in eq. (B-30)
determines the final mass ratio to be

X
rg = om,

(B-32)
From eqs. (B-31) and (B-32) it can be shown that the
ratio of the decelerating time tf - t2 to the acceler-

ating time t. is

1
-t
EL—L = Ml
€,
(B-33)
Since the final mass ratio is
(B-34)
where t =t_~-t_+ t , it is easily verified that
on f 2 1

the coast period At  is given by

Atc - t.‘_—’t‘ - t_‘: _— (B_35)
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The distance travelled within the total flight time tf
is obtained by integrating the velocities (B-28) to
(B-30) over the corresponding time intervals and summing
the results. Specifying the total distance to be L

detegrmines »m, (and hence gt t2, and at, )

through the following transcendental equation:

L= -Cﬁt£ Jnu,wn1

. % [(|..,..\|)"+ (\-M.‘)me.]

(B-36)
Eq. (B-36) may also be written in the form
c3 1
L= —~ctc nm, +‘2—1: (\—M|)
(B-37)

This second form provides a direct relationship between
-, and L at the all-propulsion lower thrust limit,

when Bt = 0.

Equation (B-36) cannot be solved explicitly for
/M, in terms of L, tf, c, and p. Consequently explicit
relations for J and AV also cannot be derived in terms
of those parameters. However, J and AV may be evaluated
in terms of M4y by substituting (B-32) into (A-19) and

(A-13), respectively, to yield
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l—Mn‘
J= .
i ) (B-38)
(B-39)

The optimum exhaust velocity for the transfer is
that value which maximizes m,; or m, when the parameters

L, tf, and p have been specified., To determine this

value, differentiate eq. (B-36) implicitly with respect

to ¢ and set
om,

3c -~ ©

The resulting equation,

y 4
Lo -2 ety dn oy o
(B-40)
must be solved simultaneously with eq. (B-36) to deter-

mine c and the maximum value of .m, .
opt
Define an optimum exhaust velocity parameter ¥ by
the following relation:

Y
2 Copr Ty

1 =

(B-41)
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Then (B-40) can be rewritten as

-3
Miimex) = €

(B-42)
Substituting (B-42) into eq. (B-36) results in a

transcendental equation in the single variable AR

= - (1-€¥) s+ (1-€%) =0
(B-43)

D 'is a mission "difficulty factor" defined as

271

D= 8t

(B-44)
Note that larger values of L, smaller flight times,
and lower power levels all constitute more difficult
missions and produce larger values of D. When L, p,
and tf are given, D is evaluated from eq. (B-44).
Then ¥ is calculated by trial-and-error from eq. (B-43)
using this value of D. Finally, the resulting value of
5 determines the optimum exhaust velocity from the

relation

(B-45)
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APPENDIX C

EXAMPLE OF MISSION PLANNING

C.l1 Description of the Mission

To illustrate application of the averaged trajectory
model to preliminary mission planning, a sample optimiza-
tion is carried out for an orbiter mission to Venus taking
place sometime during 1970 or 1971. For simplicity, a
fixed flight time of 100 days is assumed. It is desired
to determine the optimum launch date, and to compare the
payload capabilities of a present-day chemical rocket and
a proposed electric rocket of variable specific impulse.
The specific impulse of the chemical rocket is 400 sec.:
the specific mass of the low-thrust powerplant is 4 kg/kw.

Only the heliocentric portion of the total trajectory is

considered.
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C.2 Optimal Launch Date

It is known that the optimal launch date will occur
at approximately half the flight time, or 50 days, prior
to a conjunction of Earth and Venus occurring in 1970 or
1971, It is determined from Reference 16 that a conjunc-

tion occurs at J. D. 244 0900.8, or 10.3 November, 1970.

The optimal launch date will be determined by the
mean trajectory time of a typical trajectory launched
about 50 days prior to conjunction; the mean trajectory
time for this trajectory is calculated by the method
of Section 4.2. The radial distance of the Earth from

1.004 a.u. That

the sun at J. D. 24